851 research outputs found

    Studies on the primary structure of the influenza virus hemagglutinin.

    Full text link

    Molecular basis of APC/C regulation by the spindle assembly checkpoint.

    Full text link
    In the dividing eukaryotic cell, the spindle assembly checkpoint (SAC) ensures that each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex (APC/C), the E3 ubiquitin ligase responsible for initiating chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), which inhibits the APC/C and delays chromosome segregation. By cryo-electron microscopy, here we determine the near-atomic resolution structure of a human APC/C–MCC complex (APC/C(MCC)). Degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit responsible for substrate interactions. BubR1 also obstructs binding of the initiating E2 enzyme UbcH10 to repress APC/C ubiquitination activity. Conformational variability of the complex enables UbcH10 association, and structural analysis shows how the Cdc20 subunit intrinsic to the MCC (Cdc20(MCC)) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced

    Composition and activity of the non-canonical Gram-positive SecY2 complex

    Get PDF
    The accessory Sec system in Streptococcus gordonii DL1 is a specialized export system that transports a large serine-rich repeat protein, Hsa, to the bacterial surface. The system is composed of core proteins SecA2 and SecY2 and accessory Sec proteins Asp1–Asp5. Similar to canonical SecYEG, SecY2 forms a channel for translocation of the Hsa adhesin across the cytoplasmic membrane. Accessory Sec proteins Asp4 and Asp5 have been suggested to work alongside SecY2 to form the translocon, similar to the associated SecY, SecE, and SecG of the canonical system (SecYEG). To test this theory, S. gordonii secY2, asp4, and asp5 were co-expressed in Escherichia coli. The resultant complex was subsequently purified, and its composition was confirmed by mass spectrometry to be SecY2-Asp4-Asp5. Like SecYEG, the non-canonical complex activates the ATPase activity of the SecA motor (SecA2). This study also shows that Asp4 and Asp5 are necessary for optimal adhesion of S. gordonii to glycoproteins gp340 and fibronectin, known Hsa binding partners, as well as for early stage biofilm formation. This work opens new avenues for understanding the structure and function of the accessory Sec system

    Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation

    Get PDF
    AbstractThe membrane fusion potential of influenza HA, like many viral membrane-fusion glycoproteins, is generated by proteolytic cleavage of a biosynthetic precursor. The three-dimensional structure of ectodomain of the precursor HA0 has been determined and compared with that of cleaved HA. The cleavage site is a prominent surface loop adjacent to a novel cavity; cleavage results in structural rearrangements in which the nonpolar amino acids near the new amino terminus bury ionizable residues in the cavity that are implicated in the low-pH-induced conformational change. Amino acid insertions at the cleavage site in HAs of virulent avian viruses and those of viruses isolated from the recent severe outbreak of influenza in humans in Hong Kong would extend this surface loop, facilitating intracellular cleavage

    Complementary DNA sequences of two 14.5 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria Completion of the primary structure of the complex?

    Get PDF
    AbstractThe amino acid sequences of two nuclear-encoded subunits of complex I from bovine heart mitochondria have been determined. Both proteins have an apparent molecular weight of 14.5 kDa and their N-α-amino groups are acetylated. They are known as subunits B14.5a and B14.5b. Neither protein is evidently related to any known protein and their functions are obscure. A total of 34 nuclear-encoded subunits of bovine complex 1 have now been sequenced and it is thought that the primary structure of the complex is now complete, although with such a complicated structure it is difficult to be certain that there are no other subunits remaining to be sequenced. Seven additional hydrophobic subunits of the enzyme are encoded in mitochondrial DNA, and therefore bovine heart complex I is an assembly of about 41 different proteins. If it is assumed that there is one copy of each protein in the assembly, these polypeptides contain 7,955 amino acids in their sequences, more than are found in the Escherichia coli ribosome, which contains 7,336 amino acids in its 32 polypeptides

    Functional assessment of the NMDA receptor variant GluN2A (R586K)

    Get PDF
    Background: The N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate receptor that has important roles in synaptogenesis, synaptic transmission, and synaptic plasticity. Recently, a large number of rare genetic variants have been found in NMDAR subunits in people with neurodevelopmental disorders, and also in healthy individuals. One such is the GluN2AR586K variant (GRIN2AG1757A), found in a person with intellectual disability. Identifying the functional consequences, if any, of such variants allows their potential contribution to pathogenesis to be assessed. Here, we assessed the effect of the GluN2AR586K variant on NMDAR pore properties. Methods: We expressed recombinant NMDARs with and without the GluN2AR586K variant in Xenopus laevis oocytes and in primary cultured mouse neurons, and made electrophysiological recordings assessing Mg2+ block, single-channel conductance, mean open time and current density. Results: The GluN2AR586K variant was not found to influence any of the properties assessed. Conclusions: Our findings suggest it is unlikely that the GluN2AR586K variant contributes to the pathogenesis of neurodevelopmental disorder

    Stalking influenza by vaccination with pre-fusion headless HA mini-stem.

    Get PDF
    Inaccuracies in prediction of circulating viral strain genotypes and the possibility of novel reassortants causing a pandemic outbreak necessitate the development of an anti-influenza vaccine with increased breadth of protection and potential for rapid production and deployment. The hemagglutinin (HA) stem is a promising target for universal influenza vaccine as stem-specific antibodies have the potential to be broadly cross-reactive towards different HA subtypes. Here, we report the design of a bacterially expressed polypeptide that mimics a H5 HA stem by protein minimization to focus the antibody response towards the HA stem. The HA mini-stem folds as a trimer mimicking the HA prefusion conformation. It is resistant to thermal/chemical stress, and it binds to conformation-specific, HA stem-directed broadly neutralizing antibodies with high affinity. Mice vaccinated with the group 1 HA mini-stems are protected from morbidity and mortality against lethal challenge by both group 1 (H5 and H1) and group 2 (H3) influenza viruses, the first report of cross-group protection. Passive transfer of immune serum demonstrates the protection is mediated by stem-specific antibodies. Furthermore, antibodies indudced by these HA stems have broad HA reactivity, yet they do not have antibody-dependent enhancement activity

    Molecular mechanism of APC/C activation by mitotic phosphorylation.

    Full text link
    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state

    Studies of the Binding Properties of Influenza Hemagglutinin Receptor-Site Mutants

    Get PDF
    AbstractSite-specific mutations have been made in the influenza hemagglutinin (HA) receptor binding site to assess the contribution of individual amino acid residues to receptor recognition. Screening of mutant HAs, expressed using recombinant vaccinia virus-infected cells, for their abilities to bind human erythrocytes indicated that substitutions involving conserved residues Y98F, H183F, and L194A severely restricted binding and that the substitution W153A prevented cell surface expression of HA. Mutation of residues E190 and S228 that are in positions to form hydrogen bonds with the 9-OH of sialic acid appeared to increase erythrocyte binding slightly, as did the substitution G225R. Substitutions of other residues that are directly or indirectly involved in receptor binding, S136T, S136A, Y195F, G225D, and L226P, had intermediate effects on binding between these two extremes. Estimates of changes in receptor binding specificity based on inhibition of binding to erythrocytes by nonimmune horse sera indicated that mutants G225R and L226P, unlike wild-type HA, were not inhibited; Y195F and G225D mutants were, like wild type, inhibited; and erythrocyte binding by mutants S136A, S136T, E190A, and S228G was only partially inhibited. Viruses containing mutant HAs Y98F, S136T, G225D, and S228G that cover the range of erythrocyte binding properties observed were also constructed by transfection. All four transfectant viruses replicated in MDCK cells and embryonated hens' eggs as efficiently as wild-type X-31 virus, although the Y98F mutant virus was unable to agglutinate erythrocytes. Mutant MDCK cells that have reduced levels of cell surface sialic acids were susceptible to infection by S136T, G225D, and S228G transfectant viruses and by wild type but not by the Y98F transfectant virus
    corecore